

SSIA CONFERENCE - 2025

Introduction

Research
Background

Aim &
Objectives

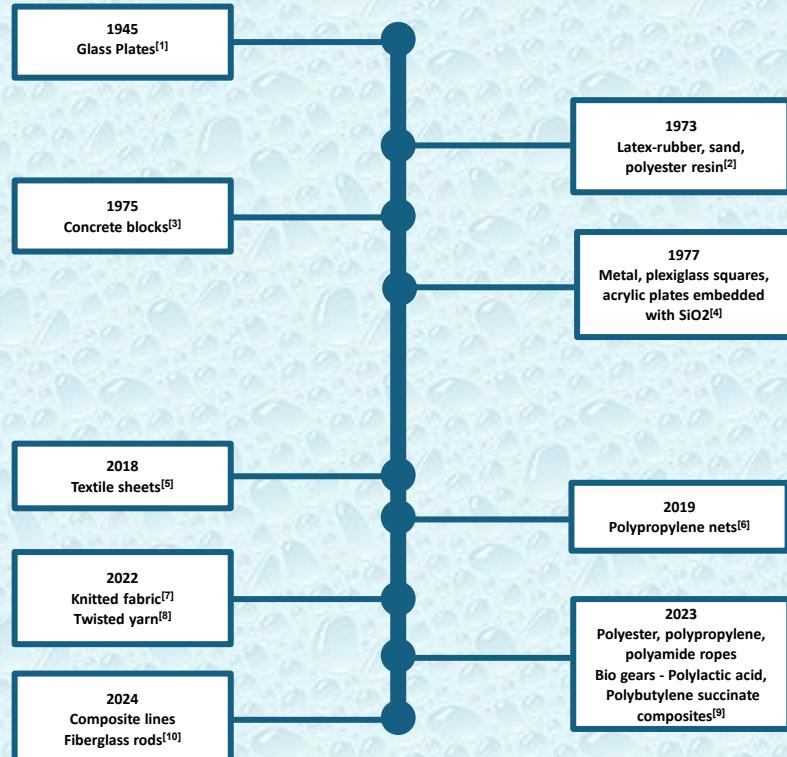
Methodology

Current
Results

Conclusion

Future Work

References


BIOMATERIALS FOR SUSTAINABLE SEAWEED AQUACULTURE

Sara Fernando

Brunel University of London

Substrate Materials Studied for Seaweed Attachment

Material and Equipment Evaluation

Ropes & Nets

- Materials:
 - Polypropylene
 - Polyester
 - Nylon
- Benefits:
 - Effective
 - Reliable
 - Versatile
- Challenges:
 - Plastic waste
 - Material degradation^[7]

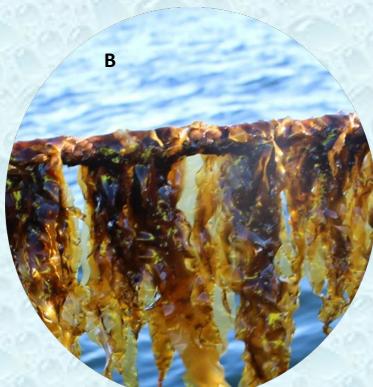


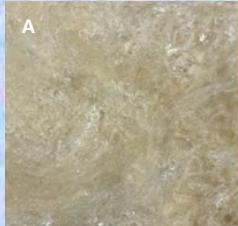
Figure 1: A: Seaweed Seedlings attached to twine B: Rope Deployed at sea
(©Lerøy Seafood Group)

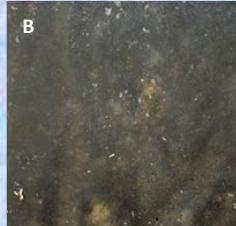
Novel Initiatives for Seaweed Cultivation

Key Issues

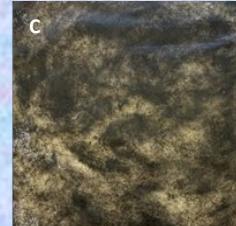
- Ropes and Nets:
 - ✓ Strength degradation
 - ✓ Plastic Pollution
 - ✓ Poor seed attachment
 - ✓ Loss of harvest

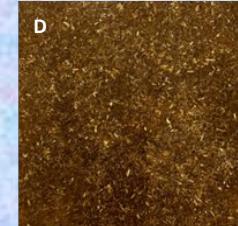
Research Gap

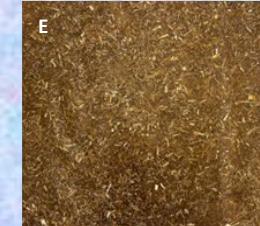

- Limitations:
 - ✓ Lack of biodegradability
 - ✓ High-strength substrates optimised for seaweed growth


Proposed Solution

- PLA bio-composites:
 - ✓ Material strength
 - ✓ Strong bio-adhesion
 - ✓ Sustainable
 - ✓ Industrial compostable
 - ✓ Nutrient-rich harvest


Composite Production – Batch 1


CC/PLA


BS/PLA

BF/PLA

WS/PLA

MS/PLA

Figure 2: PLA Biopolymer Composites Reinforced with A: CaCO_3 (CC) ,B: Basalt Scales (BS), C: Basalt Filament (BF), D: Wheat Straw (WS), E: *Miscanthus* Straw (MS)

Visual Observations of Nursery Test

Introduction

Research Background

Aim & Objectives

Methodology

Current Results

Conclusion

Future Work

References

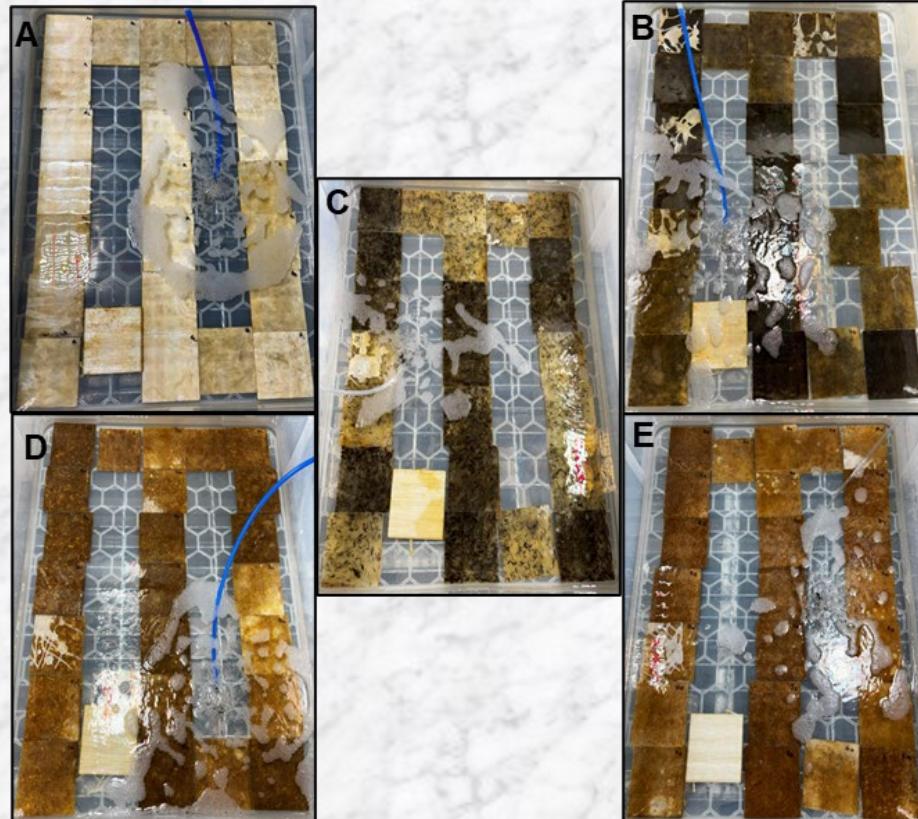


Figure 3: Nursery Tank Set up with Test Sample Plates (10 cm*10 cm) ; (A) CaCO₃ ,(B) Basalt Scales, (C) Basalt Filament, (D) Wheat Straw, (E) Miscanthus Straw . Tests conducted at Marine Laboratory, Queen's University of Belfast

Table 1: Nursery Test Results for Seaweed Adhesion (Highest Adhesion +++ / Moderate Adhesion ++ / Least Adhesion +) on the Composites Surface Untreated (SU) and Surface Sanded (SS)

Material	Formulation	Seaweed Adhesion
CaCO ₃	3% SU	+++
	15% SU	+++
	3% SS	+++
	15% SS	+++
Twine (CC)	100%	+++
	3% SU	++
	15% SU	++
	3% SS	++
Basalt Scales	15% SS	++
	100%	++
	3% SU	++
	15% SU	++
Twine (BS)	3% SS	++
	100%	++
	15% SS	++
	100%	++
Basalt Filaments	3% SU	++
	15% SU	++
	3% SS	++
	15% SS	++
Twine (BF)	100%	++
	3% SU	+
	15% SU	+
	3% SS	+
Wheat Straw	15% SS	+
	100%	+
	3% SU	+
	15% SU	+
Miscanthus Straw	3% SS	+
	100%	+
	15% SU	+
	3% SS	+
Twine (MS)	15% SS	+
	100%	+

Conclusion

- Filler and fibre reinforced PLA bio-composites were fabricated using the heat compression moulding technique as the manufacturing route.
- The nursery test results revealed that:
 - CaCO_3 composites showed the highest seaweed adhesion, while basalt reinforcements were moderate, and straw-reinforced composites were lowest, regardless of the material ratio.
 - Twine performance varied by tank conditions, with CaCO_3 tanks supporting the highest growth, while basalt tanks supporting the moderate and straw tanks supporting the lowest growth.
 - Sanded and untreated surfaces showed no significant difference in the early adhesion of seaweed seedlings in water medium without added nutrients.

Future Work

Introduction

Research
Background

Aim &
Objectives

Methodology

Current
Results

Conclusion

Future Work

References

References

1. Scheer, B.T., 1945. The development of marine fouling communities. *The Biological Bulletin*, 89(1), pp.103-121.
2. Risk, M.J., 1973. Settling plates of cold-cure acrylic plastic replicated from natural surfaces 1. *Limnology and Oceanography*, 18(5), pp.801-802.
3. Foster, M.S., 1975. Regulation of algal community development in a *Macrocystis pyrifera* forest. *Marine biology*, 32(4), pp.331-342.
4. Harlin, M.M. and Lindbergh, J.M., 1977. Selection of substrata by seaweeds: optimal surface relief. *Marine Biology*, 40(1), pp.33-40.
5. Kerrison, P.D., Stanley, M.S. and Hughes, A.D. (2018) "Textile substrate seeding of *Saccharina latissima* sporophytes using a binder: An effective method for the aquaculture of kelp," *Algal Research*, 33, pp. 352–357. Available at: <https://doi.org/10.1016/j.algal.2018.06.005>
6. Ehrmann, A., 2019. On the Possible Use of Textile Fabrics for Vertical Farming. *Tekstilec*, 62(1).
7. Sebök, S. et al. (2022) "Growth of marine macroalgae *Ectocarpus* sp. on various textile substrates," *Environmental Technology* (United Kingdom), 43(9), pp. 1340–1351. Available at: <https://doi.org/10.1080/09593330.2020.1829086>.
8. Drury, K.E. and Crotty, F.V. (2022) "Developing the Use of Wool Rope within Aquaculture—A Systematic Review," *Sustainability* (Switzerland). MDPI. Available at: <https://doi.org/10.3390/su14159011>.
9. Arantzamendi, L. et al. (2023) "Circular and lower impact mussel and seaweed aquaculture by a shift towards bio-based ropes," *Reviews in Aquaculture*. John Wiley and Sons Inc, pp. 10101019. Available at: <https://doi.org/10.1111/raq.12816>.
10. Moscicki, Z. et al. (2024) "Design, deployment, and operation of an experimental offshore seaweed cultivation structure," *Aquacultural Engineering*, 105. Available at: <https://doi.org/10.1016/j.aquaeng.2024.102413>.

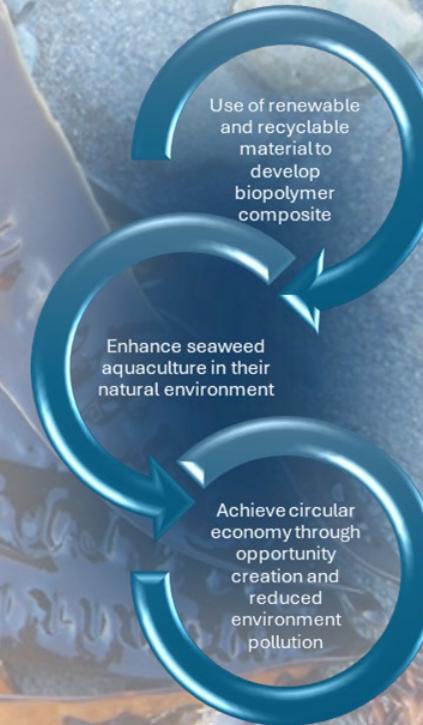
THANK YOU QUESTIONS?

✉ Sara.Fernando@brunel.ac.uk

Supervisory team;

- Dr. Lorna Anguiano (BUL)
- Dr. Kun Qi (BUL)
- Dr. Uchechukwu Onwukwe (BUL)
- Dr. Ximena Schmidt Rivera (BUL)
- Dr. Pamela Walsh (QUB)
- Dr. Jessica Adams (AU)

Collaborators;


- Oscar Roques-Siffroi,
- Albaret Lorenzo,
- Manus Cunningham,
- Emma Healey,
- Jack Burton

Brunel University staff

Dr. Virginia Martin Torrejon

Material Providers;

- Jim Woo, International Fibres Group Drake, UK
- Aleksandr Novytskyi, Zaominaerals, Ukraine
- Joao Marques, Rockfiber, Portugal

